app1-2: Instance-to-Instance Comparison Results

Type: Instance
Submitter: Emilie Danna
Description: Undisclosed industrial application from Google
MIPLIB Entry

Parent Instance (app1-2)

All other instances below were be compared against this "query" instance.

app1-2 Raw app1-2 Decomposed app1-2 Composite of MIC top 5 app1-2 Composite of MIPLIB top 5 app1-2 Model Group Composite
Raw This is the CCM image before the decomposition procedure has been applied.
Decomposed This is the CCM image after a decomposition procedure has been applied. This is the image used by the MIC's image-based comparisons for this query instance.
Composite of MIC Top 5 Composite of the five decomposed CCM images from the MIC Top 5.
Composite of MIPLIB Top 5 Composite of the five decomposed CCM images from the MIPLIB Top 5.
Model Group Composite Image Composite of the decomposed CCM images for every instance in the same model group as this query.

MIC Top 5 Instances

These are the 5 decomposed CCM images that are most similar to decomposed CCM image for the the query instance, according to the ISS metric.

Decomposed These decomposed images were created by GCG.
app1-1 decomposed pizza27i decomposed pizza78i decomposed k1mushroomi decomposed splice1k1i decomposed
Name app1-1 [MIPLIB] pizza27i [MIPLIB] pizza78i [MIPLIB] k1mushroomi [MIPLIB] splice1k1i [MIPLIB]
Rank / ISS The image-based structural similarity (ISS) metric measures the Euclidean distance between the image-based feature vectors for the query instance and all other instances. A smaller ISS value indicates greater similarity.
1 / 0.391 2 / 0.437 3 / 0.459 4 / 0.528 5 / 0.664
Raw These images represent the CCM images in their raw forms (before any decomposition was applied) for the MIC top 5.
app1-1 raw pizza27i raw pizza78i raw k1mushroomi raw splice1k1i raw

MIPLIB Top 5 Instances

These are the 5 instances that are most closely related to the query instance, according to the instance statistic-based similarity measure employed by MIPLIB 2017

Decomposed These decomposed images were created by GCG.
app1-1 decomposed loopha13 decomposed fhnw-schedule-pairb400 decomposed fhnw-schedule-pairb200 decomposed rocII-8-11 decomposed
Name app1-1 [MIPLIB] loopha13 [MIPLIB] fhnw-schedule-pairb400 [MIPLIB] fhnw-schedule-pairb200 [MIPLIB] rocII-8-11 [MIPLIB]
Rank / ISS The image-based structural similarity (ISS) metric measures the Euclidean distance between the image-based feature vectors for the query instance and all model groups. A smaller ISS value indicates greater similarity.
1 / 0.391 46 / 0.986 181 / 1.197 224 / 1.245 660 / 1.691
Raw These images represent the CCM images in their raw forms (before any decomposition was applied) for the MIPLIB top 5.
app1-1 raw loopha13 raw fhnw-schedule-pairb400 raw fhnw-schedule-pairb200 raw rocII-8-11 raw

Instance Summary

The table below contains summary information for app1-2, the five most similar instances to app1-2 according to the MIC, and the five most similar instances to app1-2 according to MIPLIB 2017.

INSTANCE SUBMITTER DESCRIPTION ISS RANK
Parent Instance app1-2 [MIPLIB] Emilie Danna Undisclosed industrial application from Google 0.000000 -
MIC Top 5 app1-1 [MIPLIB] Emilie Danna The archive contains 5 instances coming from 3 applications.app1 is interesting because the continuous variables (w) drive the model.Some solvers have numerical problems on app2 models: some solutions found violate the constraints by a small amount.app2 and app3 models are easy to solve. But they don't solve fast enough for the time limit I have in mind so I'd like to propose them for inclusion in MIPLIB. 0.390606 1
pizza27i [MIPLIB] Gleb Belov These are the instances from MiniZinc Challenges 2012-2016 (see www.minizinc.org), compiled for MIP WITH INDICATOR CONSTRAINTS using the develop branch of MiniZinc and CPLEX 12.7.1 on 30 April 2017. Thus, these instances can only be handled by solvers accepting indicator constraints. For instances compiled with big-M/domain decomposition only, see my previous submission to MIPLIB.To recompile, create a directory MODELS, a list lst12_16.txt of the instances with full paths to mzn/dzn files of each instance per line, and say$> ~/install/libmzn/tests/benchmarking/mzn-test.py -l ../lst12_16.txt -slvPrf MZN-CPLEX -debug 1 -addOption "-timeout 3 -D fIndConstr=true -D fMIPdomains=false" -useJoinedName "-writeModel MODELS_IND/%s.mps" Alternatively, you can compile individual instance as follows: $> mzn-cplex -v -s -G linear -output-time ../challenge_2012_2016/mznc2016_probs/zephyrus/zephyrus.mzn ../challenge_2012_2016/mznc2016_p/zephyrus/14__8__6__3.dzn -a -timeout 3 -D fIndConstr=true -D fMIPdomains=false -writeModel MODELS_IND/challenge_2012_2016mznc2016_probszephyruszephyrusmzn-challenge_2012_2016mznc2016_probszephyrus14__8__6__3dzn.mps 0.437430 2
pizza78i [MIPLIB] Gleb Belov These are the instances from MiniZinc Challenges 2012-2016 (see www.minizinc.org), compiled for MIP WITH INDICATOR CONSTRAINTS using the develop branch of MiniZinc and CPLEX 12.7.1 on 30 April 2017. Thus, these instances can only be handled by solvers accepting indicator constraints. For instances compiled with big-M/domain decomposition only, see my previous submission to MIPLIB.To recompile, create a directory MODELS, a list lst12_16.txt of the instances with full paths to mzn/dzn files of each instance per line, and say$> ~/install/libmzn/tests/benchmarking/mzn-test.py -l ../lst12_16.txt -slvPrf MZN-CPLEX -debug 1 -addOption "-timeout 3 -D fIndConstr=true -D fMIPdomains=false" -useJoinedName "-writeModel MODELS_IND/%s.mps" Alternatively, you can compile individual instance as follows: $> mzn-cplex -v -s -G linear -output-time ../challenge_2012_2016/mznc2016_probs/zephyrus/zephyrus.mzn ../challenge_2012_2016/mznc2016_p/zephyrus/14__8__6__3.dzn -a -timeout 3 -D fIndConstr=true -D fMIPdomains=false -writeModel MODELS_IND/challenge_2012_2016mznc2016_probszephyruszephyrusmzn-challenge_2012_2016mznc2016_probszephyrus14__8__6__3dzn.mps 0.458985 3
k1mushroomi [MIPLIB] Gleb Belov These are the instances from MiniZinc Challenges 2012-2016 (see www.minizinc.org), compiled for MIP WITH INDICATOR CONSTRAINTS using the develop branch of MiniZinc and CPLEX 12.7.1 on 30 April 2017. Thus, these instances can only be handled by solvers accepting indicator constraints. For instances compiled with big-M/domain decomposition only, see my previous submission to MIPLIB.To recompile, create a directory MODELS, a list lst12_16.txt of the instances with full paths to mzn/dzn files of each instance per line, and say$> ~/install/libmzn/tests/benchmarking/mzn-test.py -l ../lst12_16.txt -slvPrf MZN-CPLEX -debug 1 -addOption "-timeout 3 -D fIndConstr=true -D fMIPdomains=false" -useJoinedName "-writeModel MODELS_IND/%s.mps" Alternatively, you can compile individual instance as follows: $> mzn-cplex -v -s -G linear -output-time ../challenge_2012_2016/mznc2016_probs/zephyrus/zephyrus.mzn ../challenge_2012_2016/mznc2016_p/zephyrus/14__8__6__3.dzn -a -timeout 3 -D fIndConstr=true -D fMIPdomains=false -writeModel MODELS_IND/challenge_2012_2016mznc2016_probszephyruszephyrusmzn-challenge_2012_2016mznc2016_probszephyrus14__8__6__3dzn.mps 0.528045 4
splice1k1i [MIPLIB] Gleb Belov These are the instances from MiniZinc Challenges 2012-2016 (see www.minizinc.org), compiled for MIP WITH INDICATOR CONSTRAINTS using the develop branch of MiniZinc and CPLEX 12.7.1 on 30 April 2017. Thus, these instances can only be handled by solvers accepting indicator constraints. For instances compiled with big-M/domain decomposition only, see my previous submission to MIPLIB.To recompile, create a directory MODELS, a list lst12_16.txt of the instances with full paths to mzn/dzn files of each instance per line, and say$> ~/install/libmzn/tests/benchmarking/mzn-test.py -l ../lst12_16.txt -slvPrf MZN-CPLEX -debug 1 -addOption "-timeout 3 -D fIndConstr=true -D fMIPdomains=false" -useJoinedName "-writeModel MODELS_IND/%s.mps" Alternatively, you can compile individual instance as follows: $> mzn-cplex -v -s -G linear -output-time ../challenge_2012_2016/mznc2016_probs/zephyrus/zephyrus.mzn ../challenge_2012_2016/mznc2016_p/zephyrus/14__8__6__3.dzn -a -timeout 3 -D fIndConstr=true -D fMIPdomains=false -writeModel MODELS_IND/challenge_2012_2016mznc2016_probszephyruszephyrusmzn-challenge_2012_2016mznc2016_probszephyrus14__8__6__3dzn.mps 0.663740 5
MIPLIB Top 5 app1-1 [MIPLIB] Emilie Danna The archive contains 5 instances coming from 3 applications.app1 is interesting because the continuous variables (w) drive the model.Some solvers have numerical problems on app2 models: some solutions found violate the constraints by a small amount.app2 and app3 models are easy to solve. But they don't solve fast enough for the time limit I have in mind so I'd like to propose them for inclusion in MIPLIB. 0.390606 1
loopha13 [MIPLIB] Hamideh This is a Gams model which uses CPLEX as a solver. 0.986248 46
fhnw-schedule-pairb400 [MIPLIB] Simon Felix Continuous-time project scheduling and selection, inspired by an industry use-case. Each project has a value, the sum should be maximized. Each project has a deadline, and an earliest start date. Three formulations of the same problem ("Pair A", "Pair B" and "Slot") - we expect "Pair B" to be the best formulation. 1.196812 181
fhnw-schedule-pairb200 [MIPLIB] Simon Felix Continuous-time project scheduling and selection, inspired by an industry use-case. Each project has a value, the sum should be maximized. Each project has a deadline, and an earliest start date. Three formulations of the same problem ("Pair A", "Pair B" and "Slot") - we expect "Pair B" to be the best formulation. 1.244975 224
rocII-8-11 [MIPLIB] Joerg Rambau Optimal control model in the deterministic dynamic system given by bounded-confidence dynamics in a system of opinions 1.690687 660


app1-2: Instance-to-Model Comparison Results

Model Group Assignment from MIPLIB: app
Assigned Model Group Rank/ISS in the MIC: 95 / 2.440

MIC Top 5 Model Groups

These are the 5 model group composite (MGC) images that are most similar to the decomposed CCM image for the query instance, according to the ISS metric.

These are model group composite (MGC) images for the MIC top 5 model groups.
Model group: pizza Model group: pegsolitaire Model group: neos-pseudoapplication-74 Model group: mc Model group: mario
Name pizza pegsolitaire neos-pseudoapplication-74 mc mario
Rank / ISS The image-based structural similarity (ISS) metric measures the Euclidean distance between the image-based feature vectors for the query instance and all other instances. A smaller ISS value indicates greater similarity.
1 / 0.609 2 / 1.099 3 / 1.265 4 / 1.267 5 / 1.423

Model Group Summary

The table below contains summary information for the five most similar model groups to app1-2 according to the MIC.

MODEL GROUP SUBMITTER DESCRIPTION ISS RANK
MIC Top 5 pizza Gleb Belov These are the models from MiniZinc Challenges 2012-2016 (see www.minizinc.org), compiled for MIP WITH INDICATOR CONSTRAINTS using the develop branch of MiniZinc and CPLEX 12.7.1 on 30 April 2017. Thus, these models can only be handled by solvers accepting indicator constraints. For models compiled with big-M/domain decomposition only, see my previous submission to MIPLIB.To recompile, create a directory MODELS, a list lst12_16.txt of the models with full paths to mzn/dzn files of each model per line, and say$> ~/install/libmzn/tests/benchmarking/mzn-test.py -l ../lst12_16.txt -slvPrf MZN-CPLEX -debug 1 -addOption "-timeout 3 -D fIndConstr=true -D fMIPdomains=false" -useJoinedName "-writeModel MODELS_IND/%s.mps" Alternatively, you can compile individual model as follows: $> mzn-cplex -v -s -G linear -output-time ../challenge_2012_2016/mznc2016_probs/zephyrus/zephyrus.mzn ../challenge_2012_2016/mznc2016_p/zephyrus/14__8__6__3.dzn -a -timeout 3 -D fIndConstr=true -D fMIPdomains=false -writeModel MODELS_IND/challenge_2012_2016mznc2016_probszephyruszephyrusmzn-challenge_2012_2016mznc2016_probszephyrus14__8__6__3dzn.mps 0.608971 1
pegsolitaire Hiroshige Dan Model to solve model of a board game "Peg solitaire" 1.099364 2
neos-pseudoapplication-74 Jeff Linderoth (None provided) 1.265297 3
mc F. Ortega, L. Wolsey Fixed cost network flow problems 1.266640 4
mario Gleb Belov These are the models from MiniZinc Challenges 2012-2016 (see www.minizinc.org), compiled for MIP WITH INDICATOR CONSTRAINTS using the develop branch of MiniZinc and CPLEX 12.7.1 on 30 April 2017. Thus, these models can only be handled by solvers accepting indicator constraints. For models compiled with big-M/domain decomposition only, see my previous submission to MIPLIB.To recompile, create a directory MODELS, a list lst12_16.txt of the models with full paths to mzn/dzn files of each model per line, and say$> ~/install/libmzn/tests/benchmarking/mzn-test.py -l ../lst12_16.txt -slvPrf MZN-CPLEX -debug 1 -addOption "-timeout 3 -D fIndConstr=true -D fMIPdomains=false" -useJoinedName "-writeModel MODELS_IND/%s.mps" Alternatively, you can compile individual model as follows: $> mzn-cplex -v -s -G linear -output-time ../challenge_2012_2016/mznc2016_probs/zephyrus/zephyrus.mzn ../challenge_2012_2016/mznc2016_p/zephyrus/14__8__6__3.dzn -a -timeout 3 -D fIndConstr=true -D fMIPdomains=false -writeModel MODELS_IND/challenge_2012_2016mznc2016_probszephyruszephyrusmzn-challenge_2012_2016mznc2016_probszephyrus14__8__6__3dzn.mps 1.422533 5